An Analog/Mixed Signal FFT Processor for Ultra-Wideband OFDM Wireless Transceivers
نویسندگان
چکیده
As Orthogonal Frequency Division Multiplexing (OFDM) becomes more prevalent in new leading-edge data rate systems processing spectral bandwidths beyond 1 GHz, the required operating speed of the baseband signal processing, specifically the Analogto-Digital Converter (ADC) and Fast Fourier Transform (FFT) processor, presents significant circuit design challenges and consumes considerable power. Additionally, since Ultra-WideBand (UWB) systems operate in an increasingly crowded wireless environment at low power levels, the ability to tolerate large blocking signals is critical. The goals of this work are to reduce the disproportionately high power consumption found in UWB OFDM receivers while increasing the receiver linearity to better handle blockers. To achieve these goals, an alternate receiver architecture utilizing a new FFT processor is proposed. The new architecture reduces the volume of information passed through the ADC by moving the FFT processor from the digital signal processing (DSP) domain to the discrete time signal processing domain. Doing so offers a reduction in the required ADC bit resolution and increases the overall dynamic range of the UWB OFDM receiver. To explore design trade-offs for the new discrete time (DT) FFT processor, system simulations based on behavioral models of the key functions required for the processor are presented. A new behavioral model of the linear transconductor is introduced to better capture non-idealities and mismatches. The non-idealities of the linear transconductor, the largest contributor of distortion in the processor, are individually varied to determine their sensitivity upon the overall dynamic range of the DT FFT processor. Using these behavioral models, the proposed architecture is validated and guidelines for the circuit design of individual signal processing functions are presented. These results indicate that the DT FFT does not require a high degree of linearity from the linear transconductors or other signal processing functions used in its design. Based on the results of the system simulations, a prototype 8-point DT FFT processor is designed in 130 nm CMOS. The circuit design and layout of each of the circuit functions; serial-to-parallel converter, FFT signal flow graph, and clock generation circuitry is presented. Subsequently, measured results from the first proof-of-concept IC are presented. The measured results show that the architecture performs the FFT required for OFDM demodulation with increased linearity, dynamic range and blocker handling capability while simultaneously reducing overall receiver power consumption. The results demonstrate a dynamic range of 49 dB versus 36 dB for the equivalent all-digital signal processing approach. This improvement in dynamic range increases receiver performance by allowing detection of weak sub-channels attenuated by multipath. The measurements also demonstrate that the processor rejects large narrow-band blockers, while maintaining greater than 40 dB of dynamic range. The processor enables a 10x reduction in power consumption compared to the equivalent all digital processor, as it consumes only 25 mW and reduces the required ADC bit depth by four bits, enabling application in hand-held devices. Following the success of the first proof-of-concept IC, a second prototype is designed to incorporate additional functionality and further demonstrate the concept. The second proof-of-concept contains an improved version of the serial-to-parallel converter and clock generation circuitry with the additional function of an equalizer and parallelto-serial converter. Based on the success of system level behavioral simulations, and improved power consumption and dynamic range measurements from the proof-of-concept IC, this work represents a contribution in the architectural development and circuit design of UWB OFDM receivers. Furthermore, because this work demonstrates the feasibility of discrete time signal processing techniques at 1 GSps, it serves as a foundation that can be used for reducing power consumption and improving performance in a variety of future RF/mixed-signal systems.
منابع مشابه
A power-scalable variable-length analogue DFT processor for multi-standard wireless transceivers
Since the invention of the mobile phone, a new generation of mobile communication standard has emerged every 10 years. Upgrading the technology of mobile networks in all areas takes few years. Hence, mobile phones should support the previous communication standards as well as the latest standards. Realizing a multi-standard mobile phone by multiple transceivers in parallel is neither a size-eff...
متن کاملA Survey on Fft/ifft Processor for High Speed Wireless Communication System
The demand for increased channel capacity in mobile and wireless communication has been rapidly increasing due to multi fold increase in demands of multimedia services and mobile data. In the present scenario, high data rate are offered by WLAN, WiMax and LTE/ LTE-Advanced (LTE-A). Developing a wireless system for more spectral efficiency under varying channel condition is a key challenge to pr...
متن کاملReconfigurable N-Point FFT Processor Design For OFDM System
Under many research works, it has been observed that the multiple input multiple output (MIMO) system can be considered an efficient solution for the high-speed wireless communication. However, the delay spreads in non-flat fading channels abrupt the functioning of MIMO system. In orthogonal frequency division multiplexing (OFDM), the channel impulse response is flat in each sub carrier. Hence,...
متن کاملReview on Fft Processor for Ofdm System
Orthogonal frequency division multiplexing (OFDM) is a popular method for wireless transmission of data at high rate. To increase the speed of transmission, the input high rate data stream is divided into many small data streams which are then transmitted parallel in OFDM system. The key component of OFDM system is the FFT processor. FFT converts the input time domain signal into frequency doma...
متن کاملVLSI Implementation of OFDM using Efficient Mixed-Radix 8-2 FFT Algorithm with bit reversal for the output sequences
In recent years, as a result of advancing VLSI technology, OFDM has received a great deal of attention and been adopted in many new generation wideband data communication systems such as IEEE 802.11a, HiPerLAN/2, digital audio/video broadcasting (DAB/DVB-T) and asymmetric digital subscriber line (ADSL), very high speed digital subscriber line (VDSL) in wireless and wired communications, respect...
متن کامل